
Copyright © Golubev D. 1996 - 2009

TRANSFER

Copyright © Binom Soft 2009



Data transfer/conversion utility

User guide

In this user guide the functionality of the software is
described and explained.



Contents 3

Copyright © Golubev D. 2000-2008

1 Contents

What's new in version 3.3?
License info
Trial version limitations
How to register
Feadback

Introduction
What is Transfer?
What is Transfer for?
How does it work?

Menu commands
File menu
Edit menu
Data menu
View menu
Window menu
Help menu

Transfer options
Command line options
General options
Data exchange options
Processing options
Interface options

ODBC source setup
What is ODBC
ODBC drivers
ODBC source creation
File ODBC sources
Tracing ODBC transactions

Data profile setup
Data profile editting
Transfer edit
Data profile syntax

Data processing algorithms
Transfer schemas
Transfer execution algorithm
COMPLEX schema processing
Field map usage
Command tables usage
Automatic data exchange

Examples
Examples list
Using Table schema - "Books"
Using Copy schema - "Music"
Using functions and commands - "Transactions"

Reference information
Glossary
Profile structure description
Field map format
Command list format
Data types definition
Prefix symbols
Embedded functions



Transfer 3.3 help4

Copyright © Golubev D. 2000-2008

2 What's new in version 3.3?

· DB schema support for destination table/sub-table:
- transfert syntax - new "owner" keyword added
- interface for table/sub-table - new "DB schema" field added
- SQL expressions parsing is performed using DB schema parameter,
  no matter what the user login is in connection profile

3 License info

NO WARRANTY

TRANSFER IS SOLD "AS IS" AND WITHOUT ANY WARRANTY AS TO MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER WARRANTIES EITHER EXPRESSED
OR IMPLIED. THE AUTHOR WILL NOT BE LIABLE FOR DATA LOSS, DAMAGES, LOSS OF
PROFITS OR ANY OTHER KIND OF LOSS WHILE USING OR MISUSING THIS SOFTWARE.

Evaluation and Registration

Transfer is not free software. You may use this software for evaluation purposes without charge for a
period of 30 days. If you use  this software after the 30 day evaluation period, a registration fee is
required. See ORDER.TXT file or 'How to Register' section in  on-line help for detailed information
about registration method and price list.

Distribution

You may copy the evaluation version of this software and documentation as you wish, and give exact
copies of the original evaluation version to anyone, and distribute the evaluation version of the software
and documentation in its unmodified form via electronic means. But you should not charge or
requesting donations for any such copies however made and from distributing the software and/or
documentation with other products without the author's written permission.

Registered version

One registered copy of Transfer may either be used by a single person who uses the software
personally on one or more computers, or installed on a single workstation used non-simultaneously by
multiple people, but not both.

4 Trial version limitations

If you use the Trial version of Transfer , then the following limitations apply:

· Program usage is limited by 30 days.
· You cannot process more than 100 records in DBMS table in one transfer session.
· COMPLEX schema cannot be used for connected data processing.
· Automatic data exchange function is not available.

In order to obtain the full-scale Transfer version, see How to register.



How to register 5

Copyright © Golubev D. 2000-2008

5 How to register

You are limited to 30 days of use for an unregistered version of Transfer.

Registered users are entitled to FREE upgrades for the major version, they purchased. That meens,
that in case you bought registration key for version 3.30, you will receive upgrades for versions 3.xx for
FREE. If a new authorization code is required it will be issued upon request at no charge to users who
have registered for the current major version.

To register:

Visit the Web page http://binomsoft.com

6 Feadback

Homepage
If you want to get latest information about Transfer, please visit the Transfer homepage on the web at
the address below. You can also download and order latest version of Transfer at the homepage.
http://binomsoft.com/product/transfer.html

Feedback
Please send any bug report, suggestion, question and comment to the author at following address.
info@binomsoft.com

Known bugs and bug reports
Please visit our Web site to see known bugs and workarounds or to leave us your bug report.
http://binomsoft.com

7 Introduction

7.1 What is Transfer?

Transfer is the universal customizable utility for data transfer/conversion from one database to another.

Program is written in Microsoft Visual C++ with ODBC API, wich allows to reach the maximum
productivity in massive data blocks processing. Program unification is based on standardized interface
provided by ODBC drivers. Wide selection of existing ODBC drivers makes Transfer the universal tool
to work with both file databases (dBase, Access) and relational databases (Oracle, Sybase, Microsoft
SQL). In its work Transfer uses internal format of data representation, that makes it independent from
specific data types peculiar to different databases. Embedded internal data definition language allows
to customize the program to perform any tasks for information transferring/conversion.

Transfer main features:

· Work with any databases via ODBC interface.
· High performance in data processing.
· SQL query language support.
· Automatic data type convesion during transfer.
· Embedded flexible data structure (profiles) definition language.

http://binomsoft.com
http://binomsoft.com/product/transfer.html
http://binomsoft.com


Transfer 3.3 help6

Copyright © Golubev D. 2000-2008

· Support of external arguments for a data profile.
· Convenient data profile editor (GUI).
· Stored database procedures' calls during transfer.
· Trigger-based mechanism to make the data processing scenario.
· Possibility to process master-slave tables in one logical block.
· Internal text data convertor from ANSI to OEM and vice versa.

· Options to run from command line.
· Logging all actions in a protocol file.
· Optional SQL-commands execution tracing.
· Automatic message files creation upon the transfer completion.
· Possibility to run automatic file exchange with a remote host.
· Internal LZW data archiver.
· Multilingual support.

7.2 What is Transfer for?

Initially Transfer was developed as a small utility to move financial data between central office and
remote branches. However, in a course of time Transfer has become a powerful and flexible tool for
data transferring/conversion using ODBC drivers. The complexity of data processing tasks forced to
develop the flexible data structure definition language allowing the program to be highly customizable
to the particular user needs. The language has rather simple syntax which is not mandatory to
remember. Transfer has a convenient profile editor, that allows to define all neccessary parameters for
a data profile using a number of dialogs and then save them in a file.

There could be several fields of using Transfer:

· Program is very useful as a utility for quick one-occasion data transfer/conversion from one
database to another. Those databases should not neccessarily be of the same type. For example,
quite easy you can transfer your data between Access and Oracle. All you need for that - is to define
data structures (tables) and corellation between source and destination. You can also use the
special feature to automatically create tables in destination database. Data can be conveyed
unconditionally or using comparision mode, i.e. only missing rows will be added to the destination
table.

· It is possible to use Transfer as powerful tool providing data exchage between central office and
remote branches for financial applications. Data can be delivered using any media (diskette, USB
drive) or by email. Here the powerful mechanizm of integrated data processing can be used for
documents exchange (where the document is treated as a monolithic entity which consists of related
data). For data processing automation during information import the event-based scenario can be
used by means of special triggers. Also, the big advantage of Transfer is the capability of stored
database procedures' calls during data transfer.

· Transfer can also serve as a transmission mechanizm to provide an automatic continuous data
exchange between distributed databases. The special data exchange setup allows to plan automatic
sessions of data transferring in certain data intervals. Program should be run all the time (be
resident). For the convenience of users the program can be minimized to system Tray. To optimize
the data file size for sending there is an embedded data archiver in LZW format. The remote hosts
can be connected, for example, using Microsoft service "Remote-access server".

7.3 How does it work?

The basic requirements for Transfer to work are ODBC drivers for source and destination databases.
Further, the data structure (profile) must be defined and stored in a configuration file. To do that one
can use any text editor or internal dialog-based editor which eliminates the needs to learn the language
syntax. It is possible to input external parameters in the data profile, where the parameters' values can



Introduction 7

Copyright © Golubev D. 2000-2008

be entered at the execution time (for example data period). Then the created data profile file should be
registered in the list of profiles to be available for execution. From this point the data transfer operation
can be run just by selection of certain profile. You can set a default profile for import and export
operations. In that case the selected profile intialization will be done automatically when using import or
export functions.

There are several ways to run Transfer:

· Command line. The program can be run from command line with supplying of a set of options (see
Command line options).

· Manual. Program is launched manually, then the neccessary profile is choosen and executed.

· Automatic. Program is always loaded in a computer memory. For convenience the program can be
mnimized in a system Tray. Current status is displayed by a special icon. All required data
transmission operations are performed automatically in specified data intervals (see
Data exchange options).

8 Transfer menu

8.1 File menu

8.1.1 File menu

Create (Ctrl+N)
Open (Ctrl+O)
Close (Ctrl+F4)
Save (Ctrl+S)
Save as
Print setup
Page setup
Print (Ctrl+P)
Import
Export
Transfer
Start exchange (Ctrl+R)
Stop exchange (Ctrl+T)
Data profiles
Options
Exit (Alt+F4)

8.1.2 Create

Creats a new text file. A new MDI window is opened with simple text editor. It is possible to create and
edit several files simultaneously. After the text is imputted, it can be saved using commands:
Save (Ctrl+S) или Save as.

8.1.3 Open

Opens an existing file for editting. Only text files can be editted. It is possible to edit several files
simultaneously. When edditing is completed, the file can be saved using command: Save (Ctrl+S).



Transfer 3.3 help8

Copyright © Golubev D. 2000-2008

8.1.4 Close

Closes the current file edit window. If several windows are open, then the top window will be closed.

8.1.5 Save

Writing changes made to a file on a disk. If the command is used for a new file, then the program will
prompt you to enter a file name. For existing file the changes are written to the same file.

8.1.6 Save as

Allows to write file with a different name. If existing file was changed, the command can save the
modified text in a different file. Original file will remain unchanged. For a newly opened file the
command functions the same as Save (Ctrl+S).

8.1.7 Print setup

Opens system print setup dialog, which allows you to select your current ptinter and setup its
parameters.  The dialog depends on the driver of installed printer.

8.1.8 Page setup

Opens page setup dialog, which allows you to setuo the following parameters:

· paper size
· paper source
· page orientation
· margin sizes

8.1.9 Print

Allows to select printer and print text in the open file.

8.1.10 Import

Run import profile.

When using this command, if the default import profile is set, then exactly this profile is executed (see
General options). Otherwise a dialog window with the profiles list of "import" type will be opened.
Therefore, a user can choose any porfile from the list and run. After profile initialization a dialog window
with the list of all defined within a profile data blocks ( transfers) is opened where the profile parameters
(if any) can be set. Then the profile can be started for execution.



Transfer menu 9

Copyright © Golubev D. 2000-2008

8.1.11 Export

Run export profile.

When using this command, if the default export profile is set, then exactly this profile is executed (see
General options). Otherwise a dialog window with the profiles list of "export" type will be opened.
Therefore, a user can choose any porfile from the list and run. After profile initialization a dialog window
with the list of all defined within a profile data blocks ( transfers) is opened where the profile parameters
(if any) can be set. Then the profile can be started for execution.

8.1.12 Transfer

Run data transfer procedure.

When using this command, a dialog window with the list of all registered profiles is opened. A user can
choose any porfile from the list and run. After profile initialization a dialog window with the list of all
defined within a profile data blocks (transfers) is opened where the profile parameters (if any) can be
set. Then the profile can be started for execution.

8.1.13 Start exchange

Start data exchange procedure. After procedure is started, all other menu items become disabled. The
data processing algorithm depends on the "Department flag" option (see Data exchange options).

Detailed data exchange algorithm description see in Automatic data exchange .

8.1.14 Stop exchange

Stop data exchange procedure. After the procedure is stopped, all other menu items become enabled.
It is impossible to stop the procedure during file copy operations.

8.1.15 Data profiles

List of all registered in a program profiles.



Transfer 3.3 help10

Copyright © Golubev D. 2000-2008

Each data profile is a file, that should be placed in a profile directory (see General options). List of
registered profiles is stored in Trans30.ini file in [pipeline] section.

Every profile in a list has a special pictogram describing a profile type:

General purpose profile

Import profile

Export profile

To edit a profile you should double-click on it by left mouse button or hit Enter button on a keybord.
Then a profile editor window will be opened.

8.1.16 Options

Opens Transfer options dialog.

Options dialog contains the following tabs:
General options
Data exchange options
Processing options
Interface options

8.1.17 Exit

Closes program. All open MDI window are automatically closed without saving.



Transfer menu 11

Copyright © Golubev D. 2000-2008

8.2 Edit menu

8.2.1 Edit menu

Undo (Ctrl+Z
Cut (Ctrl+X)
Copy (Ctrl+C)
Paste (Ctrl+V)
Delete (Del)
Select all (Ctrl+A)
Find (Ctrl+F)
Replace (Ctrl+H)

8.2.2 Undo

Reverse previous editting action in the open file window.

8.2.3 Cut

Deletes currently selected text from open text file window and moves it to Windows clipboard. This
command is unavailable if there is no data selected.

8.2.4 Copy

Copies selected text from open text file window to Windows clipboard. This command is unavailable if
there is no data selected.

8.2.5 Paste

Inserts text fragment from Windows clipboard into the open text file window. This command is
unavailable if the clipboard is empty.

8.2.6 Delete

Deletes currently selected text from open text file window.

8.2.7 Select all

Select the whole text in open file window.

8.2.8 Find

Search open text document for a text string.



Transfer 3.3 help12

Copyright © Golubev D. 2000-2008

8.2.9 Replace

Search open text document for a text string and replace it with another text string.

8.3 Data menu

8.3.1 Data menu

Add (Ctrl+Ins)
Retrieve (F2)
Save (F3)
Edit (F4)
Delete (Ctrl+Del)
First (Ctrl+Home)
Previous (Ctrl+Up)
Next (Ctrl+Down)
Last (Ctrl+End)
Close (Ctr+F4)

8.3.2 Add

Adds an element to the profile list (register profile). Here the new profile card will be opened for data
input.

8.3.3 Retrieve

Retrieves (re-reads) data in the profile list or profile card. All data about registered profiles are stored in
Trans30.ini file. The command reads this file and displays the list of profiles.

8.3.4 Save

Saves data in the profile list (profile card). When entering a new profile or modifying existing one the
command allows to write changes in Trans30.ini file or the profile file.

8.3.5 Edit

Edits data in the profile list (opens profile card). It allows to modify the profile data in a special dialog.

8.3.6 Delete

Deletes profile from the profile list (unregisters profile). However, the profile file is not phisically deleted,
only the record about profile is deleted from Trans30.ini file.



Transfer menu 13

Copyright © Golubev D. 2000-2008

8.3.7 First

Moves to the first row in the profile list. If the profile card is open, then the data in a card is not
refreshed.

8.3.8 Previous

Moves to the previous row in the profile list. If the profile card is open, then the data in a card is not
refreshed.

8.3.9 Next

Moves to the next row in the profile list. If the profile card is open, then the data in a card is not
refreshed.

8.3.10 Last

Moves to the last row in the profile list. If the profile card is open, then the data in a card is not
refreshed.

8.3.11 Close

Closes current open MDI window. If any data in a window were modified, then program will prompt the
user whether the changes should be saved.

8.4 View menu

8.4.1 View menu

Toolbar Main
Toolbar Profiles
Status bar
Customize Main Toolbar
Customize Profiles Toolbar

8.4.2 Toolbar Main

Shows or hides the main toolbar, which includes buttons for some of the most common program
commands. A check mark appears next to the menu item when the Toolbar is displayed.

If you move the mouse cursor to the Toolbar and hold it for some time, then the hint to the
corresponding menu item will be displayed.



Transfer 3.3 help14

Copyright © Golubev D. 2000-2008

8.4.3 Toolbar Profiles

Shows or hides the profiles toolbar, which includes buttons for some of the most common commands
for managing ptofiles. A check mark appears next to the menu item when the Toolbar is displayed.

If you move the mouse cursor to the Toolbar and hold it for some time, then the hint to the
corresponding menu item will be displayed.

8.4.4 Status bar

Shows or hides the status bar (residing in the bottom of the program window). A check mark appears
next to the menu item when the Status bar is displayed.

If the status bar is displayed, it shows the selected menu item description. Also, in the right corner it
shows the status of Caps Lock, Num Lock and Scroll Lock keys.

8.4.5 Customize Main Toolbar

This menu item shows the main toolbar customization dialog:

8.4.6 Customize Profiles Toolbar

This menu item shows the profiles toolbar customization dialog:



Transfer menu 15

Copyright © Golubev D. 2000-2008

8.5 Window menu

8.5.1 Window menu

Cascade
Tile horizontally
Arrange icons

8.5.2 Cascade

Arranges MDI windows in an overlapped fashion.

8.5.3 Tile horizontally

Arranges MDI windows in non-overlapped horizontal tiles

8.5.4 Arrange icons

Arranges icons of minimized MDI windows.

8.6 Help menu

8.6.1 Help menu

Help topics (F1)
What's this? (Shift+F1)
About Transfer



Transfer 3.3 help16

Copyright © Golubev D. 2000-2008

8.6.2 Help topics

Offers you an index to topics on which you can get help.

8.6.3 What's this?

Context help. To get the context-sensitive help you should press Shift+F1, then move the mouse
cursor to the Toolbar button, menu item or interface element, and then press the left mouse button.
You will get the corresponding help topic.

8.6.4 About Transfer

This command presents Transfer dialog box which displays the copyright notice and version number of
your copy of Transfer.

9 Transfer options

9.1 Command line options

-m (Minimize) Minimize after start

-t (Tray) Minimize to system Tray

-v (Verbose) Suppress error messages

-f file (File) Profile file for execution

-p parm (Parameteres) Profile parameters

Profile parameters format:
[parm1=val1, parm2=val2, ..., parmN=valN]

If -f file option is given, the program executes profile file, then automatically closes.



Transfer options 17

Copyright © Golubev D. 2000-2008

9.2 General options

· Profiles directory. This is the folder where profile files are located. Relative path to the program
work directory can be given here.

· Log file directory. This is the folder where the program will create log file during a data transfer
session. Relative path to the program work directory can be given here.

· Log file name. Name of the file which is used by the program to write all actions and errors during
a data transfer sesion.

· Message directory. This is the folder where the program creates message files with the transfer
results.

· Message file name. Name template of the file, where the program writes the brief results of data
transfer session. After each import session the unique message file is created whic name consists
of two parts. First part is date and time when the file was created, and second part is the name
template (e.g., 05-12-2002_23-28-03_Trans.msg). To avoid message files generation the option
"Write import results to a message file" should be unset (see Processing options).

· Import profile. Name of the profile file for import by default. Only registered profiles can be
selected. Profile description is displayed under the file name. This parameter is mandatory for
automated data exchange. If this parameter is checked, then import profile will be atomatically
executed when using "Import" command from the program menu.

· Export profile. Name of the profile file for export by default. Only registered profiles can be
selected. Profile description is displayed under the file name. This parameter is mandatory for
automated data exchange. If this parameter is checked, then export profile will be atomatically
executed when using "Export" command from the program menu.



Transfer 3.3 help18

Copyright © Golubev D. 2000-2008

9.3 Data exchange options

Those parameters are intended for automatic data exchange between central office and remote
branch using Microsoft Access files. Two remote hosts should be connected using Microsoft service
"Remote-access server".

· Department flag. Determines data processing algorithm. If "Center" option is selected, then
program will be running in active mode, meaning that it will itslef initiate transfer sessions. If
"Branch" option is selected, then program will be running in passive (waiting) mode.

· Exchange interval. Time interval in minutes that determines when the transfer session be started
in active mode.

· Interrogate interval. Time interval in seconds for polling a remote host for data.
· Import file path. File name (with full path) for import. The name should be the same as it is

indicated for data source in import data profile.
· Export file path. File name (with full path) for export. The name should be the same as it is

indicated for data source in export data profile.
· Empty data file. File name (with full path) to replace the export file before export operation (to

minimize the result file size).
· Send directory. Folder (full path) on a remote host where the data are sent.
· Receive directory. Folder (full path) on a remote host from where data are received.
· Archive name. File name (without path) for archive. Data are compressed in LZW format using

embedded archiver.



Transfer options 19

Copyright © Golubev D. 2000-2008

9.4 Processing options

· Default data types. Automatic data types casting for parameters in SQL operators, if the data type
is not explicitly defined.

· Autostart of data exchange. Start data exchange session right after the rogram launch.
· Delete log file on start. If set, then log file will be re-created every time the program is started.

· Write operations to a log file. Write all executed actions during the data transfer session with
date and time indication (e.g., start operation, transfer initialization, transfer execution, file copy or
deletion etc).

· Write import results to a message file. If set, then after the import session a new message file
will be created. Message file will contain brief resuts about the data imported or modified.
Messages format is defined separately for every transfer in the data profile.

· Show error messages on a screen. If option is set, then each error will be shown in a dialog
window. User can cancel current operation, continue with displaying errors or continue without
displaying errors. In any case all errors are written in a log file.

· Trace SQL operators. If set, then all executed INSERT, DELETE и UPDATE operators will be
recorded in a protocol file.

· Trace SQL commands. If set, then all stored procedures' calls will be written in a log file.
· Trace SQL selects. If set, then all executed SELECT commands will be recorded in a log file.



Transfer 3.3 help20

Copyright © Golubev D. 2000-2008

9.5 Interface options

· Language. Selecting the current interface language. Changing this parameter will require the
program restart.

· Show about dialog on startup. If set, then the "About" dialog will be shown after the program
start.

· Minimize on start application. If set, the program window will be automatically minimized right
after application start.

· Minimize to the system Tray. If set, then the program will not appear in the task panel when
minimized, instead it will add an icon to the system Tray. After that the program can be opened
again if double-click on the program icon by a left mouse button. If a user clicks on a program icon
by a right mouse button, then context menu appears, allowing to run or stop data exchange
sessions as well as setup options.

· Save main window position. This option allows to store the position and the size of the main
program window. On the next program start the window will be shown at the same position and
with the same size.

· Save MDI windows position. If set, then the position and the size of the child MDI windows (for
example, profiles list) will be displayed at the same position and with the same size as previously.

· Maximize MDI windows. If this option is set, the the child windows will be opened maximized.

10 ODBC source setup

10.1 What is ODBC

Open Database Connectivity - ODBC - is the oldest Microsoft technlogy for database access interface
development. The main reason of ODBC introduction was the requirment to provide an easy way to
access databases with minimal dependancy on the particular programming language. For example, to
access DBF file you would need to know Xbase programming language, and to work with MDB files –



ODBC source setup 21

Copyright © Golubev D. 2000-2008

Access Basic. With ODBC standard introduction it became possible to work with different databases
using structured query language - SQL.

ODBC principals are unified for Windows: for any particular database a special driver (which is
supplied as a DLL file) is required. Actually, ODBC always needs two drivers for its work, where the
first one is used for data administration, while the second one provides the common interface for
programming languges. Drivers interaction via common interface allows to access databases using
standard set of function calls.

In Windows 3.1 only 16-bit ODBC drivers were used. The main disadvantage of those drivers was low
performance. In Windows 9x, Windows NT, Windows 2000, Windows XP 32-bit ODBC drivers were
introduced.

32-bit ODBC drivers advantages:
· High performance. Data processing speed was increased in several times (sometimes in dozens

of times).
· Capabilities. New drivers versions have enhanced capabilities for data and tasks control.
· Multithreaded data processing. Decrease the probability of application crash due to one task

failure.

10.2 ODBC drivers

In many cases ODBC drivers are supplied by a database provider. Also ODBC drivers are included in
some software packets. For example, Microsoft Office contains the following ODBC drivers:
· Microsoft SQL Server
· Microsoft ODBC for Oracle
· Microsoft Access
· Microsoft Excel

· Microsoft FoxPro
· DBase
· Paradox
· Text File

To see what ODBC drivers are installed in your Windows system, you need to open Control Panel.
Then in Control Panel double-click on "ODBC Data Sources (32 bit)" icon and the "ODBC Data Source
Administrator" window will appear. Select Drivers tab and you will see the list of installed ODBC drivers:



Transfer 3.3 help22

Copyright © Golubev D. 2000-2008

Note that the list contains drivers names and some additional technical info. the most important are
Version and Company columns, as they inform who is the driver provider and whether you need to
update it. Knowing driver version may also help in problems resolution if they occur during work with
specific database. Column File is also useful when you need to remove driver or recover it.

10.3 ODBC source creation

To work with ODBC you should have the database or create ir. Below you may find a technique to
make the configured data source for Microsoft Access database.

Step 1
Double-click on "ODBC Data Sources (32 bit)" icon in Control Panel. you will see the "ODBC Data
Source Administrator" dialog. Note that this is "User DSN" tab. There are also "System DSN" and "File
DSN" tabs, that are used for file data sources.



ODBC source setup 23

Copyright © Golubev D. 2000-2008

Step 2
Press Add button. You will see the "Create New Data Source" dialog.

Step 3
· Choose one of the ODBC drivers(for ex., Microsoft Access Driver), and then press Finish button.

You will see the "ODBC Microsoft Access Setup" dialog window as shown below. Note that this



Transfer 3.3 help24

Copyright © Golubev D. 2000-2008

window may differ  for other ODBC drivers, as different drivers may require different configuration
data.

· Input the data source name in the "Data Source Name" field. It should be meaningful, but not too
long.

· Enter short database description in the "Description" field.
· Select system database option. In most cases you should choose "None", unless you want the

system database.

Step 4
To select existing database, press Select button. File Open dialog will appear to pickup the file. ODBC
driver will automatically offer correct file extention.



ODBC source setup 25

Copyright © Golubev D. 2000-2008

To create a new database press Create button. Besides, ODBS Access drivers allows to shrink and
recover database files from this dialog window.

Step 5
Press Advanced button… and you will see the "Set Advanced Options" window. You may setup guest
user name and password. You may also setup additional options like number of threads that can used
database. Press OK button when you finished with advanced options.



Transfer 3.3 help26

Copyright © Golubev D. 2000-2008

Step 6
Press OK again to close the "ODBC Microsoft Access Setup" dialog. You should see the new element
as shown below. If later you need to modify settings for TestDB database, simply select it and press
Configure button. To delete database press Remove button.



ODBC source setup 27

Copyright © Golubev D. 2000-2008

10.4 File ODBC source

If it is neccessary to configure the common data source for several computers in a network, then file
ODBC data source is used. The following method gives an example of how to setup File DSN.

Step 1
Double-click on "ODBC Data Sources (32 bit)" icon, and the "ODBC Data Source Administrator" dialog
will appear. Choose File DSN tab and you will see the window as shown below. Select the place for
storing DSN information. Click on the "Look in" drop-down list. You will see the list of file folders and
disk drives on your computer. One possibility is to use the network drive where the database file is
placed.

Шаг 2
Press Add button. The "Create New Data Source" window will appear.



Transfer 3.3 help28

Copyright © Golubev D. 2000-2008

Шаг 3
Select one of the ODBC drivers and then press NExt button. You will see the following "Create New
Data Source" dialog page. Here you should enter the data source name and its location (full path).
Press Browse button and you will see the File Open dialog where you can select the storage place.
Enter file name and the wizard will automatically add .DSN as an extension.

Step 4
Press Next and you will see the final dialog window as shown below. It will report the parameters of



ODBC source setup 29

Copyright © Golubev D. 2000-2008

DSN that you are going to create.

Шаг 5
Нажмите кнопку Finish и вы увидите модифицированную версию диалогового окна ODBC
Microsoft Access Setup, показанную ниже. Нажмите кнопку Select и выберите базу данных,
которую хотите использовать.

Step 6
Press OK button when you finished the configuration process. You will see a new file DSN element,
similar to shown in "ODBC Data Source Administrator" dialog window.



Transfer 3.3 help30

Copyright © Golubev D. 2000-2008

Unlike the usual DSN, this actually creates a file, that you may see and edit in a text editor. Below you
may find the file DSN example.



ODBC source setup 31

Copyright © Golubev D. 2000-2008

10.5 Tracing ODBC transaction

To trace all operarions being perfomed by ODBC drivers, the transaction tracing can be turned on. To
start registering of transactions, you should use "Tracing" tab in the "ODBC Data Source Administrator"
window. Here you can setup the name and location of log file indicating it in Log file Path field. Once
you press "Start Tracing Now" button, the tracing will begin. the button caption will change to "Stop
Tracing Now". Once again press this button to cancel tracing.

11 Data profile setup

11.1 Data profile editting

11.1.1 Data profile editting

New data profile registration
Entering profile parameters
Managing transfers list

11.1.2 New data profile registration

To register a new profile it is neccessary to create profile file and then add it to the Transfer profile list.
List of registered profiles is a part of Trans30.ini file. The profile files itself should be located in a
special directory, which is configured in the Transfer options (see General options).



Transfer 3.3 help32

Copyright © Golubev D. 2000-2008

All these actions can be done by opening "Data profiles" window from the File menu (see
Data profiles). To enter a new profile click the right mouse button on the window and then select "Add"
in a context window (you may also use the hot keys combunation - Ctrl+Ins). The new profile window
will be opened as shown below.

Enter the following data on this page:
· File. File name with PPL extension. this file will be saved in the Transfer profile directory. You can

also press […] button, located next to the field, to select existing profile file. In that case the window
will be automatically filled in by data from the selected file.

· Type. There are three types – Transfer, Import, Export. Those values identify the profile by its
functional type.

· Name. Short profile description reflecting its purpose.
· Parameters. Text string containing the list of parameters and their values. To edit parameters

press [...] button on the right (see Entering profile parameters).
· Source. ODBC data source identifier. It can be selected from the drop-down list showing existing

ODBC DSNs (see ODBC source creation).
· Source UID . User ID for the source database. It is mandatory for relational databases.
· Source PWD . User password for the source database. It is mandatory for relational databases.
· Destination . ODBC data destination identifier. It can be selected from the drop-down list showing

existing ODBC DSNs  (see ODBC source creation).
· Destination UID. User ID for the destination database. It is mandatory for relational databases.
· Destination PWD. User password for the destination database. It is mandatory for relational

databases.

See also Managing transfers list .

Upon completion of entering profile data press Save or Ok button. The profile file will be created and
saved in the corresponding directory.



Data profile setup 33

Copyright © Golubev D. 2000-2008

11.1.3 Entering profile parameters

If you press [...] button next to the parameters field in the profile edit window, a dialog window will be
opened, as shown below.

The dialog has a table with the following columns:
· Code. Parameter identifier. It cannot start with a number and contain blanks or special symbols.
· Name. Brief parameter description.
· Type. One of available data type – Char, Integer, Numeric, Date, Time, Timestamp (see

Data types definition).
· Value. Initial value by default. Not mandatory.

To add a parameter in the end of the list use "Add" button. To insert a parameter before the current
row use "Insert" button. "Delete" button removes current row from the parameters list. After all
parameters are entered press OK button to return to the profile edit window.

11.1.4 Managing transfers list

In the bottom of the profile edit window you may see the list of transfers for this profile. The list shows
transfer name and its schema. For more detailed information about possible schemas see
Transfer schemas.

There are the following buttons that are used for editting transfer list:
· Add. Adds a new transfer to the end of the list.

· Insert. Insert a new transfer before the current in the list.
· Edit. Opens an edit dialog for the current transfer.
· Delete. Deletes the current transfer.



Transfer 3.3 help34

Copyright © Golubev D. 2000-2008

11.2 Transfer edit

11.2.1 Transfer edit

Editting source table data
Editting destination table data
Editting subtable data
Entering fields map
Entering command list

11.2.2 Editting source table data

For transfer editting a dialog window with several pages is opened. Page "Source" contains common
transfer parameters, as well as SQL query for the source table:
· Name. Brief transfer description.
· Schema. Data processing schema: Table, Copy, Complex (for more details see

Transfer schemas).
· Transmission of text data. Option for possible text data conversion: Without conversion, OEM to

ANSI, ANSI to OEM.
· Message string. The text string, that will be displayed during transfer execution. It may contain

references to the source or destination tables fields (see Prefix symbols). This string is also used
for logging into the message file if this option is set.

· Source SQL Select. SQL Select to retrieve data from table in the source database. It may contain
references to the profile parameters.

· Subtable SQL Select . SQL Select to retriev data from the subordinate table in the source
database (see COMPLEX schema processing). It may contain references to the profile
parameters and to the master table fields.



Data profile setup 35

Copyright © Golubev D. 2000-2008

11.2.3 Editting destination table data

This page contains the following parameteres :
· Table. Mandatory field which determines the table name in the destination database.
· Process. Determines the data processing algorithm: Table creation, Add data, Replace data, Full

compare (see Transfer execution algorithm).
· SQL where clause. Not mandatory, defining additional query condition that will be used for

searching data in destination table in case of "Replace data" or "Full compare" algorithms.
· Table fields map. For "Table" schema this map is used to define the source and destination

tables fileds correlation (see Entering fields map). For "Copy" and "Complex" schemas this can be
used for fields redefinition (renaming) or to define special fields flags. See also Field map usage.



Transfer 3.3 help36

Copyright © Golubev D. 2000-2008

11.2.4 Editting subtable data

This page is not mandatory for filling in and is used only for "Complex" schema (see
COMPLEX schema processing ).

The page contains the following parameteres:
· Table. Mandatory field which determines the subtable name in the destination database.

· Process. Determines the data processing algorithm: Table creation, Add data, Replace data, Full
compare (see Transfer execution algorithm).

· SQL Were clause . Not mandatory, defining additional query condition that will be used for
searching data in destination subtable in case of "Replace data" or "Full compare" algorithms.

· Table fields map. For "Table" schema this map is used to define the source and destination
tables fileds correlation (see Entering fields map). For "Copy" and "Complex" schemas this can be
used for fields redefinition (renaming) or to define special fields flags. See also Field map usage.



Data profile setup 37

Copyright © Golubev D. 2000-2008

11.2.5 Entering fields map

Fields map is a table with the following columns:
· Field. Field identifier in database table.
· Flag. Modifier, allowing to define special features for a field. Avauilable values:

K - Key field
N - Read-only field
T - Trigger
F - Run/rollback flag
For more information about field flags see Field map usage.

· Type. One of available data type – Char, Integer, Numeric, Date, Time, Timestamp (see
Data types definition).

· Length . Maximum length for text data or number of digits for numeric data.
· Precision. Maximum precision for numeric data types.

· Reference (<-). Reference prefix. For more information see Prefix symbols.
· Value. Not mandatory, depends on the value in "Reference" field. Can be used to assign a

constant value to a field or enter a reference.

To add a field in the end of the table use "Add" button. To insert a field before the current row use
"Insert" button. "Delete" button removes current row from the fields map.



Transfer 3.3 help38

Copyright © Golubev D. 2000-2008

11.2.6 Entering commands list

Commands list defines actions to be performed under certain condition during transfer execution. For
more information about different command types see Commands list usage . Duplicating commands
with the same event type is not allowed - the only exception is OnChange (ReChange) events (in that
case values in the "Field" column must differ). Commands list has the following columns:
· Command. Any SQL operators (Insert, Update, Delete) or stored procedures calls (using Call

command) are allowed here. If it is necessary to run several commands upon one condition,
different commands can be written in the same field separated by semicolon. You can use
references to the data fields or profile parameters as arguments in SQL operators and stored
procedures calls (see Prefix symbols). For more details about commands syntax see
Commands list format.

· Event. The condition that triggers the command . the following values are used:
OnStart - When transfer is started
OnEnd - When transfer is finished
CallExec - When data block is "registered". Only for COMPLEX schema.
CallBack - When data block is "unregistered". Only for COMPLEX schema.
OnInsert - On each row insertion
OnUpdate - On each row update
OnDelete - On each row deletion
ReInsert - On each row insertion rollback
ReUpdate - On each row update rollback
ReDelete - On each row deletion rollback
OnChange - On particular field change
ReChange - On particular field change rollback

· Field. Destination table field identifier. Used only for OnChange event.

To add a command in the end of the list use "Add" button. To insert a command before the current row
use "Insert" button. "Delete" button removes current row from the commands list.



Data profile setup 39

Copyright © Golubev D. 2000-2008

11.3 Data profile syntax

11.3.1 Data profile syntax

Profile structure description
Filed map format
Command list format
Data types definition
Prefix symbols
Embedded functions

11.3.2 Profile structure description

PARAMETERS{
[type1 param1(name1)[=val1], …, typeN paramN(nameN)[=valN]]
 type=<char, integer, numeric, date, time, timestamp>
}
CONNECT{
Source( DSN=;UID=;PWD=  )



Transfer 3.3 help40

Copyright © Golubev D. 2000-2008

Destination( DSN=;UID=;PWD= )
}
TRANSFER{
Name( Description )
Schema( <COLUMNS, COPY, COMPLEX> )
ConvertText( <UNCHANGED, OEMTOANSI, ANSITOOEM> )
Source( source table SQL Select )
SubSQL( subtable SQL Select )
Message( message string )
Destination( process=<CREATE,ADD,REPLACE,FULL>
owner=<DB schema>
table=<destination table>
condition( SQL Where clause for destination table )
columns( fields map )
see Fileds map format
)
Detail( process=<CREATE,CLEAR,ADD,REPLACE,FULL>
  owner=<DB schema>
  table=<subtable>
  condition( SQL Where clause for destination subtable )
  columns( fields map )
see Fileds map format
)
TabCommands( Destination table commands list )
SubCommands( Subtable commands list  )
See Commands list format
}
…
TRANSFER{
}

Data profile file usually contains one PARAMETERS section, one CONNECT section and at least on or
several TRANSFER sections.

PARAMETERS section holds the list of parameters for the whole profile, meaning that the parameters
values can be used in the fields map or the commands list. This section is not mandatory.

CONNECT section describes ODBC connections parms for source and destination databases. The
section is mandatory for the data profile. For the file ODBC sources UID и PWD parameters are not
required.

TRANSFER section defines the structure of the data block to be transmitted.



Data profile setup 41

Copyright © Golubev D. 2000-2008

Name Data block designation

Schema Data transfer schema. Available values are:
COLUMNS      - data transmission according to the fields map
COPY             - copying the source table data structure into the destination database
COMPLEX       - transferring connected data using model "master-detail"
For more information see Transfer schemas .

ConvertText Option for possible text data conversion:
UNCHANGED  - without conversion
OEMTOANSI   - convert OEM to ANSI format
ANSITOOEM   - covert ANSI to OEM format

Source SQL Select to the source table (master).

SubSQL SQL Select to the subordinate table (detail or subtable).

Message The text string, that will be displayed during transfer execution. It may contain references to the source
or destination tables fields (see Prefix symbols). This string is also used for logging into the message
file if this option is set.

Destination This section defines the structure of the master table in the destination database. There are the
following subsections:
process      = Data processing algorith, possible values are:
CREATE     - table creation in the destination database. If the table already exists, it will be deleted and

re-created
ADD            - only adding data to the destination table (unconditional INSERT operators)
REPLACE   - data replacement in the destination table (INSERT or UPDATE operator depending on

whether the row with the same key already exists or not)
FULL          - full comparison. This is two-pass process. The aim of this process is to have identical

data in source and destination (in the scope of given SQL query). Data missing in the
source table are deleted from destination. Data missing in the destination table are added
to the destination.

owner        = DB schema or owner of the destination table
table          = Destination table name
condition   = SQL Where clause for destination table
columns    = Fields map (see Fields map format )

Detail This section defines the structure of the subordinate (detail) table in the destination database. It has
several subsections with the same structure as "Destination" section.

TabCommands List of commands for destination table (See Commands list format).

SubCommands List of commands for subordinate table (See Commands list format).

11.3.3 Fileds map format

Fields map is intended to define the correlation between columns of source and destination tables. The
syntax includes the destination table column name (optionally starting with the flag separated by a
colon) with the data type and length following by an "equal" sign and then reference or a constat (see
Prefix symbols):

[flag:]field1[(type[,lengh,precision])]=src ref1;
...



Transfer 3.3 help42

Copyright © Golubev D. 2000-2008

[flag:]fieldN[(type[,lengh,precision])]=src refN;

Flag Description

K Key field. Defins a unique table index.

N Read-only field. When table is updated, this field is not modified.

T Trigger. When the field value is changed during transfer, the
"registration" mechanism is triggered.

F "Registration" flag for data block. Used only in COMPLEX schema.

type=<BT,TI,SI,BI,I,R,F,DB,DC,N,A,VA,LVA,B,VB,LVB,D,T,DT,TS>
See  Data types definition

Fields map examples:

Example 1.
columns(T:sklad;T:code_currency;T:cur_code_currency;F:flag;N:typ_rate;N:sum_link_sd))

Example 2.
columns(T:id_ware;proc_tax1=<prc_tax1;proc_tax2=<prc_tax2;proc_tax3=<prc_tax3; N:price_spc))

Example 3.
columns(K:ndprt(I)=$ndprt;K:id_ware(I)=$id_ware;id_parent(I)=$id_parent;
last_ware(I)=$last_ware;flag_ware(I)=$flag_ware;flag_made(I)=$flag_made;
comp_ware(I)=$comp_ware;code_unit(I)=$code_unit;code_country(I)=$code_country;
id_pro(I)=$id_pro;id_ser(I)=$id_ser;name_ware(VA,80)=$name_ware;
name_ware2(VA,80)=$name_ware2;code_ware(VA,30)=$code_ware;
code_gr(VA,255)=$code_gr;barcode(VA,30)=$barcode;marka_ware(VA,40)=$marka_ware;
okdp_ware(VA,20)=$okdp_ware;post_ware(VA,30)=$post_ware;gost_ware(VA,30)=$gost_ware;
acnt_ware(VA,10)=$acnt_ware;weight(DB)=$weight;pack(DB)=$pack;cost_ware(DB)=$cost_ware;
count_ware(DB)=$count_ware;t_tax1(I)=$t_tax1;t_tax2(I)=$t_tax2;t_tax3(I)=$t_tax3;
v_tax1(DB)=$v_tax1;v_tax2(DB)=$v_tax2;v_tax3(DB)=$v_tax3;wdata(TS)=$wdata;t_info(LVA)))

11.3.4 Commands list format

Commands list is used for defining the event-driven data processing during transfer.

Event(command1[; ... commandN])
Event=<OnStart, OnEnd, CallExec, CallBack,
          OnInsert, OnUpdate, OnDelete,
          ReInsert, ReUpdate, ReDelete,
          OnChange.field, ReChange.field>

Command=<Insert, Update, Delete, Call procedure>

It is allowed to define several Insert, Update, Delete operators or procedures calls separated by
semicolon within one command.

Command types (events):



Data profile setup 43

Copyright © Golubev D. 2000-2008

Event Description

OnStart When transfer is started

OnEnd When transfer is finished

CallExec When data block is "registered". Only for COMPLEX schema.

CallBack When data block is "unregistered". Only for COMPLEX schema.

OnInsert On each row insertion

OnUpdate On each row update

OnDelete On each row deletion

ReInsert On each row insertion rollback

ReUpdate On each row update rollback

ReDelete On each row deletion rollback

OnChange On particular field change

ReChange On particular field change rollback

It is possible to use any prefixes in SQL commands or stored procedures calls (see Prefix symbols) for
references to profile parameters or data fields of source and destination.

Example of commands list:

TabCommands(
CallExec(update sdoc set flag=1
where  type_sd=$type_sd and numref=$numref and year=$year and
       ndprt=$ndprt and autokey_sd=$autokey_sd)
CallBack(update sdoc set flag=0
where  type_sd=$type_sd and numref=$numref and year=$year and
       ndprt=$ndprt and autokey_sd=$autokey_sd)
OnInsert(call BAL_MOD($numref,$year,$cli1_ndprt,$cli1_numb_client,
$code_currency,^0,$sumf_sd,$date_sd,$flag))
OnUpdate(call BAL_MOD($numref,$year,$cli1_ndprt,$cli1_numb_client,
$code_currency,#sumf_sd,$sumf_sd,$date_sd,#flag))
OnDelete(call BAL_MOD(#numref,#year,#cli1_ndprt,#cli1_numb_client,
#code_currency,#sumf_sd,^0,#date_sd,#flag))
ReInsert(call BAL_MOD($numref,$year,$cli1_ndprt,$cli1_numb_client,
$code_currency,$sumf_sd,^0,$date_sd,$flag))
ReUpdate(call BAL_MOD($numref,$year,$cli1_ndprt,$cli1_numb_client,
$code_currency,$sumf_sd,#sumf_sd,$date_sd,#flag))
ReDelete(call BAL_MOD(#numref,#year,#cli1_ndprt,#cli1_numb_client,
#code_currency,^0,#sumf_sd,#date_sd,#flag))
OnChange.date_sd(update card_spc set date_card=$date_sd
where  numref=$numref and year=$year and sklad=$sklad and
       sds_numref=$numref and sds_year=$year and
       type_sd=$type_sd and sds_ndprt=$ndprt and
       autokey_sd=$autokey_sd)
OnChange.cli1_numb_client(call BAL_MOD(#numref,#year,
#cli1_ndprt,#cli1_numb_client,#code_currency,#sumf_sd,^0,#date_sd,#flag);
call BAL_MOD($numref,$year,
$cli1_ndprt,$cli1_numb_client,$code_currency,^0,#sumf_sd,$date_sd,#flag);
update card_spc set cli_ndprt=$cli1_ndprt,
       numb_client=$cli1_numb_client
where  numref=$numref and year=$year and sklad=$sklad and
       sds_numref=$numref and sds_year=$year and



Transfer 3.3 help44

Copyright © Golubev D. 2000-2008

type_sd=$type_sd and sds_ndprt=$ndprt and
       autokey_sd=$autokey_sd)
ReChange.date_sd(update card_spc set date_card=#date_sd
where  numref=$numref and year=$year and sklad=$sklad and
       sds_numref=$numref and sds_year=$year and
       type_sd=$type_sd and sds_ndprt=$ndprt and
       autokey_sd=$autokey_sd)
ReChange.cli1_numb_client (call BAL_MOD($numref,$year,
$cli1_ndprt,$cli1_numb_client,$code_currency,#sumf_sd,^0,$date_sd,#flag);
call BAL_MOD(#numref,#year,
#cli1_ndprt,#cli1_numb_client,#code_currency,^0,#sumf_sd,#date_sd,#flag);
update card_spc set cli_ndprt=#cli1_ndprt,
       numb_client=#cli1_numb_client
where  numref=$numref and year=$year and sklad=$sklad and
       sds_numref=$numref and sds_year=$year and
       type_sd=$type_sd and sds_ndprt=$ndprt and
       autokey_sd=$autokey_sd))

11.3.5 Data types definition

Definition ODBC SQL type Description

BT Bit Single bit

TI TinyInt Integer with a length of 3 in a range of -128 ~ 127 ( unsigned 0 ~ 255)

SI SmallInt Integer with a length of 5 in a range of -32768 ~ 32767 (unsigned 0 ~ 65535)

BI BigInt Integer with a length of 19 in a range of -2^63 ~ 2^63-1 (unsigned 0 ~ 2^64-1)

I Integer Integer with a length of 10 in a range of -2^31 ~ 2^31-1 (unsigned 0 ~ 2^32-1)

R Real Signed numeric value with the binary length of 24 in a range of 0 ~ 10^38

F Float Signed numeric value with defined binary length p.

DB Double Signed numeric value with the binary length of 53 in a range of 0 ~ 10^308

DC Decimal Signed numeric value with the assigned length of p and precision s. (Maximum
length depends on the ODBC driver). 1 <= p < 15, s <= p

N Numeric Signed numeric value with the assigned length of p and precision s. 1 <= p < 15,
s <= p

A Char Text string with the fixed length n.

VA VarChar Variable length text string with the maximum length n.

LVA LongVarChar Variable length text string. Maximum length depends on the ODBC driver.

B Binary Binary data with the fixed length n.

VB VarBinary Variable length binary data with the maximum length n.

LVB LongVarBinary Variable length binary data. Maximum size depends on the ODBC driver.

T Time Time in hours, minutes and seconds.

D Date Gregorian date, month and year.

TS Timestamp Date and time.

11.3.6 Prefix symbols

Prefix symbols are used to make references to profile parameters or source and destination data fields
in the fields map or commands list. After the prefix symbol the data field name or a constant is



Data profile setup 45

Copyright © Golubev D. 2000-2008

indicated.

Symbol Description Comments

^ Value (constant) The constant value will be set in the field for every
SQL Insert and Update operation.

+ Autoincrement The constant in the field indicates the increment
value. Autoincrement value will be calculated for
every SQL Insert operator, but not for Update. The
value is calculated as the maximum field value in
the table plus autoincrement constant.

: Profile parameter Data from the parameter field will be set in the field
for every SQL Insert and Update operations.

$ Field in the master
source table

Data from the current row in the main source table
will be used in SQL Insert and Update operations.

~ Field in the subordinate
source table

Data from the current row in the subordinate source
table will be used in SQL Insert and Update
operations.

# Field in the master
destination table

Data from the current row in the main destination
table will be used in SQL Insert and Update
operations.

! Field in the subordinate
destination table

Data from the current row in the subordinate
destination table will be used in SQL Insert and
Update operations.

< Field redefinition Mainly used in COPY schema when some columns
names differ in source and destination tables. Data
from the current row in the main source table will be
set in the field.

% Embedded functions Embedded functions allow to call predefined SQL
queries for complex data processing. For more
information see Embedded functions.

11.3.7 Embedded functions

Embedded functions are the functions that can be used in the "Value" column of the fields map. To
indicate the embedded function in the fields map the special prefix % is used. The function value is
calculated during processing of each  record in the destination table.

Currently Transfer supports the following types of embedded functions:



Transfer 3.3 help46

Copyright © Golubev D. 2000-2008

Function Parameters Description

SQLGetVal field, table, where expr Returns the field value from the table based on the
where expr criterion. If more than one row is
returned, then the value in the first row is used.

SQLMaxVal field, table, where expr Returns the maximum field  value from the table
based on the where expr criterion.

SQLMinVal field, table, where expr Returns the minimum field value from the table
based on the where expr criterion.

SQLAvgVal field, table, where expr Returns the average field value from the table based
on the where expr criterion.

SQLVarVal field, table, where expr Returns variation of the field value from the table
based on the where expr criterion.

SQLSumVal field, table, where expr Returns sum of the field values from the table based
on the where expr criterion.

SQLCount table, where expr Returns the number of rows in the table satisfying
the where expr criterion.

12 Data processing algorithms

12.1 Transfer schemas

The most important and gloabl attribute of the transfer is the execution schema. Schema defines the
common principle of data transmisson within particular transfer. Schema also has an impact to all
other transfer parameters.That is why choosing the correct schema for the transfer is very important
step.

Tthe following transfer schemas are supported:
· Table. This is the most simple type of data transmission. Usually it is used while converting data

from one database to another, where the source and destination databases can be absolutely
different (for example, ORacle and MS Access). It is mandatory for this schema to define the fields
map, as it is assumed that source and destination tables have different structure. Tables in source
and destination databases may have different number of columns, column names or types. All
those problems can be easily resolved using fields map. In addition all data types conversion is
done automatically due to internal universal data types representation.

· Copy. This schema is used when source and destination tables have almost (or exact) identical
structure. This means that they have equal number of columns with the same name (not
mandatory) and similar data type. However this does not mean that source and destination
databases should be the same. Using Copy schema allows to avoid detailed fields correlation
definition. In that case fields map can be used for fields redefinition (renaming) or for assigining
special field flags (see Fields map usage).

· Complex. This is the most complicated data processing algorithm. It is used to define the
transmission process of connected data with master-detail model. It is supposed by default that in
"Complex" schema source and destination tables should be identical. Therefore this schems is
further development of "Copy" schema. For "Complex" schema the subtable term is introduced.
Subtable is a subordinate table to the master table in the destination (source) database. Data in
those tables are considered as the unified information block: each row in the master table is
logically connected with the set of rows in the subordinate. If data in the subordinate table cannot
be transmitted for some reason, then the connected row in the master table should not be
transmitted either. For "Complex" schema it is mandatory to define parameters for subtable in the
transfer profile. More detailed description of this algorithm can be found in
COMPLEX schema processing .



Data processing algorithms 47

Copyright © Golubev D. 2000-2008

12.2 Transfer execution algorithm

Transfer execution algorithm for the given schema is defined by "Process" parameter. This parameter
is set for the master table and subtable separately. Let's consider algorithms for different "Process"
parameter values.

Create table
This algorithm implies forced table creation in the destination database before running the transfer. If
the table with this name already exists, then it is first deleted to guarantee correct data structure. If
"Table" schema is defined, then the fields map is used to create a table. It is neccessary that at least
one primary key (K flag) was defined in the fields map, otherwise the table will not be created. If "Copy"
schema is used, then the table structure is copied from the source table. Since before the transfer the
destination table is empty, the transmission process adds up to the unconditional data move from
source to destination using SQL Insert operators. Before Insert the destination table is not verified
whether the row with the same key already exists. During transfer execution the following events can
occur (the corresponding commands can be triggered): OnStart, OnInsert, ReInsert, OnEnd.

Add data
Adding data algorithm is very convenient for transmissin/conversion of large data blocks. It can be
used only when it is known that the destination table does not contain data we are going to transmit.
The benefit of this method is in data processing speed, because during the transfer execution the
destination table is not verified whether the record with a particular key already exists. This saves time
that can be critical for the large data blocks transmission. Data is transmitted using SQL Insert
statemenets to the destination table with data taken from the source table. If during execution the
duplicating record error occurs, the program will show this error and ask a user to either stop or
continue operation. User has an option to suppress error messages that will alow him to finish the data
transfer session. Anyway, all error messages will be saved in the log file that can be viewed after
transfer completion. The following events can be triggered during execution: OnStart, OnInsert,
ReInsert, OnEnd.

Replace data
This algorithm is used only when it is required to guarantee that all data (according to the SQL query)
is transmitted from source to destination. There can be a situation when records with the same key
exist in both source and destination. In that case data in the destination table should be replaced by
data from the source table. To provide such functionality it is neccessary to test every data record
being transmitted by searching in the destination table by the unigue key. If the record does not exist,
then SQL Insert operator is executed. If the row with this key is found the the target table, then this
record is modified with the data from the source table using SQL Update operator. The following
events can be triggered during transfer execution: OnStart, OnInsert, ReInsert, OnUpdate, ReUpdate,
OnChange, ReChange, OnEnd.

Full compare
Previous algoritm ensures that all required data are transmitted from source to destintion, however it
does not guarantee that data in the target table is absolutely identical to the source. The point is that
there can be records in the destination table that are missing in the source table. But the replacing
algorithm does not detect this, since it would require two-pass data comparision process, therefore
increasing the overall execution time. Nevertheless, in some cases it is required to provide an absolute
identity of data in source and destination, for example in COMPLEX schema. Full comparison algoritm
does two passes through the source and destination table during execution. In the first pass through
the destination table it detects records missing in destination. Tose rows are deleted using SQL Delete
operator. then in the second pass the data replacing algorithm from source to destination is actually
performed. Note, that data is compared only within the scope of SQL query to the source table. The
following events can be triggered during transfer execution: OnStart, OnDelete, ReDelete, OnInsert,
ReInsert, OnUpdate, ReUpdate, OnChange, ReChange, OnEnd.



Transfer 3.3 help48

Copyright © Golubev D. 2000-2008

12.3 COMPLEX schema processing

COMPLEX schema is intended for transmission of connected information using master-detail model.
Good example of such information is financial documents.

For instance, the invoice usually has some header information and specification. The header contains
document number, date, warehouse, customer name. The specification is a list of goods with quantity
and price. When a document is transmitted between two databases, it is usually required that the
document is recieved as the whole entity, i.e. both header and specifiation. There should not be a
situation when the header exists but the specification is lost or presented just partially. In such cases
we cannot guarantee the data integrity. In other words, the main idea is the following: either the
document exists or it is not present at all.

There is another aspect of this matter. Usually the financial/bookkeeping documents (like invoice) are
used to change some accounting registers, for example payment balance or warehouse rest.
Therefore, when registered the document should perform some additional actions in the database.
Very often such actions are designed in a form of database stored procedures. When the document is
imported in the database of the financial application, it is logical to assume that the same actions
should be done as if the document was entered by a user manually. In reality the situation is even
much more complex as it may seem on the first glance. The matter is that here we face with the
questions on how to transmit documents already present in the system but changed (for example, the
invoice was already imported once, but then the specification was changed in the source databse and
then the document is being transmitted again). During the repeated transfer it is neccessary to process
all changes in the document correctly having in mind the possible modifications in accounting registers
(using stored procedures calls). To simplify and automate the document processing technology the
"registration" term was introduced in the tool (which is in fact the bookkeeping term). "Registered"
document means that all accompanied actions are done (accouting transactions etc). Also, the
document is considered "unregistered" if it exists in the database, but the corresponding actions are
not executed. Usually, to reflect the "registration" status of the document a special column in the
document tables is introduced in the financial/bookkeeping applications.

Taking into account all above, the COMPLEX schema functions in the following way:
1. Depending of the process type defined for the master table (usually it is "Replace data"), the

record in the master table is transmitted. First, SQL Insert (Update) operator is performed. If there
are no errors, then the associated transfer command (OnInsert, OnUpdate) is executed. If it
succeeded, then the program starts processing subtable. If not, then in case of Update data
modification is cancelled and Transfer is going to the next record. If SQL Insert operator is failed,
then the CallBack transfer command is run (if defined). This can be required to clear the
"registration" flag in the destination table. Further, the subtable records are processed, however in
that case the associated commands will not be triggered (as the document is treated as
"unregistered").

2. If for any field in the master table F flag is defined and the field value in the source data is greater
than in the destination, then OnInsert transfer command will be executed. The subordinate table is
processed twice. First, data in source and destination tables is made identical (of course by
implementing changes in the destination table). Then, for each record in the destination subtable
only OnInsert transfer commands are executed. If subtable was not processed successfully, then
the transfer command for the master table is rolled back. Also, CallBack command is called to
clear the "registration" flag.

3. If for any field in the master table F flag is defined and the field value in the source data is less
than in the destination, then OnDelete transfer command will be executed. The subordinate table
is processed twice. First, for each row in the subtable only OnDelete transfer commands are
executed. If this operation failed, then the transfer command for the master table is rolled back.
Also, CallExec command is called to restore the "registration" flag. Then, data in source and
destination tables is made identical without running associated commands.

4. Further, the fields that have T (trigger) flag are verified in the master table. If the value of such
field is modified, this means the whole record (data block) should be deleted and re-inserted.



Data processing algorithms 49

Copyright © Golubev D. 2000-2008

Therefore, if the record existed in the destination table, then the data is deleted from the subtable
with associated commands execution, and then the record itself is deleted. Then the information is
transmitted again using associated commands calls.

5. Subtable is processed according to the process type (usually it is defined as "Full compare"). For
each row in the subtable the corresponding SQL operators are performed and associated transfer
commands are executed. All performed actions are recorded in a special temporary buffer. For
each row in the subtable the fields with T (trigger) flag are verified.

6. If during subtable processing any SQL operator returns error for a row, then all previous actions
for the whole records set are cancelled using information from the temporary buffer (all inserted
rowas are deleted, all deleted or modified - restored). Also all associated commands are rolled
back (for that purpose the "reverse" command are defined: ReInsert, ReUpdate, ReDelete). The
processing of subtable is stopped, and for the master table all previous actions are also cancelled.
Further, Transfer is moving to the next record in the master table.

7. If for some reason the associated transfer command cannot be executed for the subtable record
(i.e., there are no goods in stock), further scenario will depend on the SQL operator type in the
master table.

· If it was SQL Insert, then all previous transfer commands (not SQL operators) in the subtable
are rolled back using information from the temporary buffer. However, subtable processing is
not stopped, but all subsequent records are processed without associated commands. After the
subordinate table is done, the associated commands for the current row in the master table are
also rolled back and the CallBack transfer command is called to clear the "registration" flag.

· If SQL Update was performed for the master table, then all actions in the subtable are cancelled
(including SQL operators). Subtable processing is completely stopped, and all actions are
cancelled for the master table as well. Then transfer is moving to the next row in the master
table.

12.4 Fields map usage

Fields map is used for several purposes: to define the correlation between source and destination table
fields in "Table" schema, to redefine fields for "Copy" and "Complex" schemas, and also to define
special flags. Fields map usage in the "Table" schema is described in Entering fields map. The syntax
to write in the profile file can be found in Fields map format.

Redefinition (renaming) of the fields is used for the "Copy" schema, where the source and destination
tables are almost identical, but some columns may have different names (with the similar data type). In
that case the record can be added in the fields map where in the "Field" column the destination field
name is indicated, and in the "Refernce (<-)" column a special symbol "<" is selected, meaning
redefinition. In the "Value" column the source field name should be place. The field type is not required
here as it is assumed that the data types are almost identical (i.e., both have numeric type). Also, the
special flags can be introduced for the field: N, K, F, T.

Flag N (non-changable field).
If it is neccessary for the field value in the destination table to remain unchanged during the transfer,
this flag is set. However, if a new record is inserted in the destination table, the value in this field will be
copied from the source.

Flag K (key field).
This flag means that the field is a unique key or a part of the compound key. Key definnition is
mandatory for at least one field in the "Table" schema. For "Copy" and "Complex" schemas the
information about key columns is taken from the source table as it is assumed that the source and
destination tables have identical structure.

Flag F ("registration" flag).
This flag indicates that the field is used as a "registration" indicator for the document. If the value in this
field differs during transmisison of the existing row, then the special mechanizm is used for the whole



Transfer 3.3 help50

Copyright © Golubev D. 2000-2008

document to "register" or "unregister" it (see COMPLEX schema processing ).

Flag T (trigger).
The purpose of this flag is to indicate that this field value is critical for the whole document (if set for the
master table). In other words, if the value in a master table record is changed, then the document
should be deleted and re-inserted. Example: if the warehouse identifier was changed in the invoice
document, then we need to cancel the accounting transaction for the old warehouse and run the
corresponding transaction for another warehouse. This is equal to the invoice deletion and registering it
again for the new warehouse. See COMPLEX schema processing ).

12.5 Commands list usage

Commands list is used to define the event-driven scenario to perform some associated actions during
data transmission. Commands are tied to the particular SQL operators performed in the destination
table. Most often the commands list is used in "Complex" schema, however there are no any
limitations to use it in any other schemas. The meaning of the columns in the commands list table see
in Entering commands list .

To enter a command in the commands list you need first to indicate an event that will trigger this
command. Duplicating commands with the same event type is not allowed - the only exception is
OnChange (ReChange) events (in that case values in the "Field" column must differ). If it is necessary
to run several commands upon one condition, different commands can be written in the same field
separated by semicolon. Any SQL operators (Insert, Update, Delete) or stored procedures calls (using
Call command) are allowed in the "Command" field. You can use references to the data fields or profile
parameters as arguments in SQL operators and stored procedures calls (see Prefix symbols). For
more details about commands syntax see Commands list format.

The commands can be defined for the following events:
OnStart
Command is executed before transfer start. For subtable it is executed for each row procession in the
master table. If this command fails, then transfer is stopped.

OnEnd
Command is executed after transfer is finished. For subtable it is executed for each row procession in
the master table.

OnInsert
Command is executed after SQL Insert operator and only if it was successful.

ReInsert
For "Complex" schema it is required to define this command if OnInsert command was defined. It is
used to rollback the results of OnInsert command execution. Therefore, here the SQL operators should
be entered that perform the reverse actions with respect to OnInsert command.

OnUpdate
Command is executed after SQL Update operator and only if it was successful.

ReUpdate
For "Complex" schema it is required to define this command if OnUpdate command was defined. It is
used to rollback the results of OnUpdate command execution. Therefore, here the SQL operators
should be entered that perform the reverse actions with respect to OnUpdate command.

OnDelete
Command is executed before SQL Delete operator. if the command was successful, only then SQL
Delete operator is performed.



Data processing algorithms 51

Copyright © Golubev D. 2000-2008

ReDelete
For "Complex" schema it is required to define this command if OnDelete command was defined. It is
used to rollback the results of OnDelete command execution. Therefore, here the SQL operators
should be entered that perform the reverse actions with respect to OnDelete command.

OnChange
It is used for certain actions that needs to be done if the value in this field was modified. For this event
"Field" value is mandatory.

ReChange
For "Complex" schema it is required to define this command if OnChange command was defined. It is
used to rollback the results of OnChange command execution. Therefore, here the SQL operators
should be entered that perform the reverse actions with respect to Onchange command.

CallExec
It is used only for "Complex" schema (see COMPLEX schema processing). It is neccessary to define
this command if the master table of the document contains "registration" indicator field. CallExec event
is happening during document "registration".

CallBack
It is used only for "Complex" schema (see COMPLEX schema processing). It is neccessary to define
this command if the master table of the document contains "registration" indicator field. CallBack event
is happening during document "unregistration".

12.6 Automatic data exchange

This mode is intended for automatic data exchange between central office and remote branch using
Microsoft Access files. The
data exchange algorithm is dependant on "Department flag" settings (see Data exchange options).
One of the requirement for proper data exchange is the connection between two remote computer via
modem or ethernet network. Access to the remote branch computer folders should be provided for the
central office computer. For the modem connection this can be achieved using "remote-access server"
Mincrosoft service that should be run on the remote host. The Transfer program on the central office
computer is playing an active role in the hosts' interaction. The data echange algorithm is the following:

1. Transfer program on the remote branch computer is running in the waiting mode, inspecting
periodically the "Receive directory" on the same computer after the "Interrogate interval" (given in
seconds in Data exchange options).

2. After "Exchange interval" (given in minutes in Data exchange options), the "central" Transfer
program runs export profile, wich is set as a default in General options. At the same time, before
the actual export the export database file (Microsoft Access file) is replaced by an empty file to
minimize the resulting file.

3. After the export is done, the export file is renamed to the import file name and the is compressed
using embedded LZW archiver. As a result the archive export file is created with the "Archive
name" as it is configured in Data exchange options.

4. The obtained file is then copied to the remote "Send directory" (which is configured as "Receive
directory" in the remote computer Transfer options). Actually the file is copied with the .tmp
extension and then renamed to its natural extention after the copy operation is complete.

5. Then Transfer on the central office computer goes to the waiting mode, starting to poll the remote
"Receive directory" (which is configured as "Send directory" in the remote computer Transfer
options) after the "Interrogate interval" (given in seconds in Data exchange options).

6. As soon as the "branch" Transfer discovers the archive file in its "Receive directory", it immediately
copies this file to the local import directory and uncompress it, deleting the archive file.

7. "Branch" Transfer runs the default import profile.
8. "Branch" Transfer runs the default export profile.



Transfer 3.3 help52

Copyright © Golubev D. 2000-2008

9. "Branch" Transfer compress the resulting export file using embedded LZW archiver. the arcive file
is placed in the local "Send directory".

10. As soon as the "central" Transfer discovers the archive file in its "Receive directory" (which is
configured as "Send directory" in the remote computer Transfer options), it starts copying it to its
local import directory. After the copy is complete the archive file on the remote computer is deleted.
The obtained file is uncompressed and the archive file is also deleted.

11. "Central" Transfer runs default import profile. With that the exchange cycle is finished. The next
cycle will be initiated by the "central" Transfer after the "Exchange interval".

13 Examples

13.1 Examples list

The following examples are installed with the program:

Using Table schema - "Books"
Using Copy schema - "Music"
Using functions and commands - "Transactions"

Example data profile files are located in the folder: .\PPL\. Their names are, respectively: books.ppl,
music.ppl, trans.ppl.

In all examples the Microsoft Access database is used. Therefore, to use the examples you need to
have the Microsoft Access software installed on your PC. During examples installation the neccessary
ODBC data sources are created automatically and the following database files are installed:
.\In\Import.mdb
.\Out\Export.mdb

13.2 Using Table schema - "Books"

File: books.ppl.

In this example the Table schema technic is demonstated. Data profile contains two transfers: Authors
and Books. At the same time only one table from Import.mdb database is used as a data source -
Books. Intially the table is not normalized, as it contains redundant data about books authors. The data
profile is created in such a way so as to provide that each row in the table would contain only unique
data. To reach that the transfers are defined to create two tables in the destination database: Authors
and Books.

In the first transfer we fill in the Authors table fetching the unique author names from the Books table.
To generate the unique key the autoincrement prefix (+) is used in "ID_Author" field definition. Further,
in the second transfer all columns are copied except the "author" field. Instead of that, in Books table of
the destination database we define the "id_author" field, which should contain the record ID from the
Authors table. To obtain the code by the author name, the embedded SQL-function SQLGetVal() is
used.

Pay attention to the fact that both transfers contain the fields with the K (key) flag in their table maps.
This is the mandatory condition, otherwise the ODBC driver will not create a table. Also, field "size" in
the Books table is defined with the different data type: varchar instead of integer. However, the
program successfully converts data values due to internal universal data types format used in the
program, which is independant of external data sources data types.



Examples 53

Copyright © Golubev D. 2000-2008

13.3 Using Copy schema - "Music"

File: music.ppl.

This example is created to illustrate the Copy schema usage. This kind of data transfer is very
convenient for quick transmission of large amount of data from one database to another, when the
table in the destination database is not strictly determined. This way is useful because it does not
require to define all columns in the fields map. It is enough just to setup the SQL-query for the source
table and to define the destination table name. The rest will be done by the program: it will create the
table with appropriate structure and will perform data type conversion if neccessary. However, chema
Copy allows some flexibility, for eample when you require to customize the destination table structure.

In this example you can see how to redefine some of the table columns. At the same time it is not
required to define the columns types, as they are automatically taken from the source table. One of the
limitation here is that the key field cannot be redefined. However, source and destination table names
must not be identical - in this example they are different.

Pay your attention to the fact that in this data profile the parameters are used, namely the one
parameter: max_records. This parameter is used in the SQL-query for the source table. The parameter
has the default value that is automatically assigned on transfer start. During transfer execution you can
change the default value, thereby modifying the set of data for processing.

13.4 Using functions and commands - "Transactions"

File: trans.ppl.

In this example the Table schema is used also. Almost all fields from the source table are listed in the
fields map using redefinition. Also, in the data profile the normalization of the Transactions table is
provided - instead of one the two tables are created: Curr и Trans. The currency code from the Curr
table is fetched by embedded SQL-function SQLGetVal(). In the Trans table of the destination
database additional field "balance" is defined, which should store the accumulative sum resulting from
the previous transactions. To do that, embedded SQL-function SQLSumVal() is used, that returns the
sum of already recorded values of "amount" field in the Trans table.

However, this example is expecially interesting because of extened Transfer capability to execute
SQL-commands upon certain scenario that is used here. In this case in the Transaction transfer the
SQL-command is defined that will run upon OnEnd event. This means that the command will be called
right after the data transfer completes. In this example the command is used to write the final value in
the "balance" field of the Trans table.



Transfer 3.3 help54

Copyright © Golubev D. 2000-2008

14 Reference information

14.1 Glossary

DBF
DBMS
DLL
LZW
MDB
MDI
ODBC
PPL
PWD
SQL
System Tray
UID
xBase
Transfer
Key field
Subtable
Trigger



Reference information 55

Copyright © Golubev D. 2000-2008

14.2 Profile structure description

PARAMETERS{
[type1 param1(name1)[=val1], …, typeN paramN(nameN)[=valN]]
 type=<char, integer, numeric, date, time, timestamp>
}
CONNECT{
Source( DSN=;UID=;PWD=  )
Destination( DSN=;UID=;PWD= )
}
TRANSFER{
Name( Description )
Schema( <COLUMNS, COPY, COMPLEX> )
ConvertText( <UNCHANGED, OEMTOANSI, ANSITOOEM> )
Source( source table SQL Select )
SubSQL( subtable SQL Select )
Message( message string )
Destination( process=<CREATE,ADD,REPLACE,FULL>
owner=<DB schema>
table=<destination table>
condition( SQL Where clause for destination table )
columns( fields map )
see Fileds map format
)
Detail( process=<CREATE,CLEAR,ADD,REPLACE,FULL>
  owner=<DB schema>
  table=<subtable>
  condition( SQL Where clause for destination subtable )
  columns( fields map )
see Fileds map format
)
TabCommands( Destination table commands list )
SubCommands( Subtable commands list  )
See Commands list format
}
…
TRANSFER{
}

Data profile file usually contains one PARAMETERS section, one CONNECT section and at least on or
several TRANSFER sections.

PARAMETERS section holds the list of parameters for the whole profile, meaning that the parameters
values can be used in the fields map or the commands list. This section is not mandatory.

CONNECT section describes ODBC connections parms for source and destination databases. The
section is mandatory for the data profile. For the file ODBC sources UID и PWD parameters are not
required.

TRANSFER section defines the structure of the data block to be transmitted.



Transfer 3.3 help56

Copyright © Golubev D. 2000-2008

Name Data block designation

Schema Data transfer schema. Available values are:
COLUMNS      - data transmission according to the fields map
COPY             - copying the source table data structure into the destination database
COMPLEX       - transferring connected data using model "master-detail"
For more information see Transfer schemas .

ConvertText Option for possible text data conversion:
UNCHANGED  - without conversion
OEMTOANSI   - convert OEM to ANSI format
ANSITOOEM   - covert ANSI to OEM format

Source SQL Select to the source table (master).

SubSQL SQL Select to the subordinate table (detail or subtable).

Message The text string, that will be displayed during transfer execution. It may contain references to the source
or destination tables fields (see Prefix symbols). This string is also used for logging into the message
file if this option is set.

Destination This section defines the structure of the master table in the destination database. There are the
following subsections:
process      = Data processing algorith, possible values are:
CREATE     - table creation in the destination database. If the table already exists, it will be deleted and

re-created
ADD            - only adding data to the destination table (unconditional INSERT operators)
REPLACE   - data replacement in the destination table (INSERT or UPDATE operator depending on

whether the row with the same key already exists or not)
FULL          - full comparison. This is two-pass process. The aim of this process is to have identical

data in source and destination (in the scope of given SQL query). Data missing in the
source table are deleted from destination. Data missing in the destination table are added
to the destination.

owner        = DB schema or owner of the destination table
table          = Destination table name
condition   = SQL Where clause for destination table
columns    = Fields map (see Fields map format )

Detail This section defines the structure of the subordinate (detail) table in the destination database. It has
several subsections with the same structure as "Destination" section.

TabCommands List of commands for destination table (See Commands list format).

SubCommands List of commands for subordinate table (See Commands list format).

14.3 Fields map format

Fields map is intended to define the correlation between columns of source and destination tables. The
syntax includes the destination table column name (optionally starting with the flag separated by a
colon) with the data type and length following by an "equal" sign and then reference or a constat (see
Prefix symbols):

[flag:]field1[(type[,lengh,precision])]=src ref1;



Reference information 57

Copyright © Golubev D. 2000-2008

...
[flag:]fieldN[(type[,lengh,precision])]=src refN;

Flag Description

K Key field. Defins a unique table index.

N Read-only field. When table is updated, this field is not modified.

T Trigger. When the field value is changed during transfer, the
"registration" mechanism is triggered.

F "Registration" flag for data block. Used only in COMPLEX schema.

type=<BT,TI,SI,BI,I,R,F,DB,DC,N,A,VA,LVA,B,VB,LVB,D,T,DT,TS>
See  Data types definition

Fields map examples:

Example 1.
columns(T:sklad;T:code_currency;T:cur_code_currency;F:flag;N:typ_rate;N:sum_link_sd))

Example 2.
columns(T:id_ware;proc_tax1=<prc_tax1;proc_tax2=<prc_tax2;proc_tax3=<prc_tax3; N:price_spc))

Example 3.
columns(K:ndprt(I)=$ndprt;K:id_ware(I)=$id_ware;id_parent(I)=$id_parent;
last_ware(I)=$last_ware;flag_ware(I)=$flag_ware;flag_made(I)=$flag_made;
comp_ware(I)=$comp_ware;code_unit(I)=$code_unit;code_country(I)=$code_country;
id_pro(I)=$id_pro;id_ser(I)=$id_ser;name_ware(VA,80)=$name_ware;
name_ware2(VA,80)=$name_ware2;code_ware(VA,30)=$code_ware;
code_gr(VA,255)=$code_gr;barcode(VA,30)=$barcode;marka_ware(VA,40)=$marka_ware;
okdp_ware(VA,20)=$okdp_ware;post_ware(VA,30)=$post_ware;gost_ware(VA,30)=$gost_ware;
acnt_ware(VA,10)=$acnt_ware;weight(DB)=$weight;pack(DB)=$pack;cost_ware(DB)=$cost_ware;
count_ware(DB)=$count_ware;t_tax1(I)=$t_tax1;t_tax2(I)=$t_tax2;t_tax3(I)=$t_tax3;
v_tax1(DB)=$v_tax1;v_tax2(DB)=$v_tax2;v_tax3(DB)=$v_tax3;wdata(TS)=$wdata;t_info(LVA)))

14.4 Commands list format

Commands list is used for defining the event-driven data processing during transfer.

Event(command1[; ... commandN])
Event=<OnStart, OnEnd, CallExec, CallBack,
          OnInsert, OnUpdate, OnDelete,
          ReInsert, ReUpdate, ReDelete,
          OnChange.field, ReChange.field>

Command=<Insert, Update, Delete, Call procedure>

It is allowed to define several Insert, Update, Delete operators or procedures calls separated by
semicolon within one command.

Command types (events):



Transfer 3.3 help58

Copyright © Golubev D. 2000-2008

Event Description

OnStart When transfer is started

OnEnd When transfer is finished

CallExec When data block is "registered". Only for COMPLEX schema.

CallBack When data block is "unregistered". Only for COMPLEX schema.

OnInsert On each row insertion

OnUpdate On each row update

OnDelete On each row deletion

ReInsert On each row insertion rollback

ReUpdate On each row update rollback

ReDelete On each row deletion rollback

OnChange On particular field change

ReChange On particular field change rollback

It is possible to use any prefixes in SQL commands or stored procedures calls (see Prefix symbols) for
references to profile parameters or data fields of source and destination.

Example of commands list:

TabCommands(
CallExec(update sdoc set flag=1
where  type_sd=$type_sd and numref=$numref and year=$year and
       ndprt=$ndprt and autokey_sd=$autokey_sd)
CallBack(update sdoc set flag=0
where  type_sd=$type_sd and numref=$numref and year=$year and
       ndprt=$ndprt and autokey_sd=$autokey_sd)
OnInsert(call BAL_MOD($numref,$year,$cli1_ndprt,$cli1_numb_client,
$code_currency,^0,$sumf_sd,$date_sd,$flag))
OnUpdate(call BAL_MOD($numref,$year,$cli1_ndprt,$cli1_numb_client,
$code_currency,#sumf_sd,$sumf_sd,$date_sd,#flag))
OnDelete(call BAL_MOD(#numref,#year,#cli1_ndprt,#cli1_numb_client,
#code_currency,#sumf_sd,^0,#date_sd,#flag))
ReInsert(call BAL_MOD($numref,$year,$cli1_ndprt,$cli1_numb_client,
$code_currency,$sumf_sd,^0,$date_sd,$flag))
ReUpdate(call BAL_MOD($numref,$year,$cli1_ndprt,$cli1_numb_client,
$code_currency,$sumf_sd,#sumf_sd,$date_sd,#flag))
ReDelete(call BAL_MOD(#numref,#year,#cli1_ndprt,#cli1_numb_client,
#code_currency,^0,#sumf_sd,#date_sd,#flag))
OnChange.date_sd(update card_spc set date_card=$date_sd
where  numref=$numref and year=$year and sklad=$sklad and
       sds_numref=$numref and sds_year=$year and
       type_sd=$type_sd and sds_ndprt=$ndprt and
       autokey_sd=$autokey_sd)
OnChange.cli1_numb_client(call BAL_MOD(#numref,#year,
#cli1_ndprt,#cli1_numb_client,#code_currency,#sumf_sd,^0,#date_sd,#flag);
call BAL_MOD($numref,$year,
$cli1_ndprt,$cli1_numb_client,$code_currency,^0,#sumf_sd,$date_sd,#flag);
update card_spc set cli_ndprt=$cli1_ndprt,
       numb_client=$cli1_numb_client
where  numref=$numref and year=$year and sklad=$sklad and
       sds_numref=$numref and sds_year=$year and



Reference information 59

Copyright © Golubev D. 2000-2008

type_sd=$type_sd and sds_ndprt=$ndprt and
       autokey_sd=$autokey_sd)
ReChange.date_sd(update card_spc set date_card=#date_sd
where  numref=$numref and year=$year and sklad=$sklad and
       sds_numref=$numref and sds_year=$year and
       type_sd=$type_sd and sds_ndprt=$ndprt and
       autokey_sd=$autokey_sd)
ReChange.cli1_numb_client (call BAL_MOD($numref,$year,
$cli1_ndprt,$cli1_numb_client,$code_currency,#sumf_sd,^0,$date_sd,#flag);
call BAL_MOD(#numref,#year,
#cli1_ndprt,#cli1_numb_client,#code_currency,^0,#sumf_sd,#date_sd,#flag);
update card_spc set cli_ndprt=#cli1_ndprt,
       numb_client=#cli1_numb_client
where  numref=$numref and year=$year and sklad=$sklad and
       sds_numref=$numref and sds_year=$year and
       type_sd=$type_sd and sds_ndprt=$ndprt and
       autokey_sd=$autokey_sd))

14.5 Data types definition

Definition ODBC SQL type Description

BT Bit Single bit

TI TinyInt Integer with a length of 3 in a range of -128 ~ 127 ( unsigned 0 ~ 255)

SI SmallInt Integer with a length of 5 in a range of -32768 ~ 32767 (unsigned 0 ~ 65535)

BI BigInt Integer with a length of 19 in a range of -2^63 ~ 2^63-1 (unsigned 0 ~ 2^64-1)

I Integer Integer with a length of 10 in a range of -2^31 ~ 2^31-1 (unsigned 0 ~ 2^32-1)

R Real Signed numeric value with the binary length of 24 in a range of 0 ~ 10^38

F Float Signed numeric value with defined binary length p.

DB Double Signed numeric value with the binary length of 53 in a range of 0 ~ 10^308

DC Decimal Signed numeric value with the assigned length of p and precision s. (Maximum
length depends on the ODBC driver). 1 <= p < 15, s <= p

N Numeric Signed numeric value with the assigned length of p and precision s. 1 <= p < 15,
s <= p

A Char Text string with the fixed length n.

VA VarChar Variable length text string with the maximum length n.

LVA LongVarChar Variable length text string. Maximum length depends on the ODBC driver.

B Binary Binary data with the fixed length n.

VB VarBinary Variable length binary data with the maximum length n.

LVB LongVarBinary Variable length binary data. Maximum size depends on the ODBC driver.

T Time Time in hours, minutes and seconds.

D Date Gregorian date, month and year.

TS Timestamp Date and time.

14.6 Prefix symbols

Prefix symbols are used to make references to profile parameters or source and destination data fields



Transfer 3.3 help60

Copyright © Golubev D. 2000-2008

in the fields map or commands list. After the prefix symbol the data field name or a constant is
indicated.

Symbol Description Comments

^ Value (constant) The constant value will be set in the field for every
SQL Insert and Update operation.

+ Autoincrement The constant in the field indicates the increment
value. Autoincrement value will be calculated for
every SQL Insert operator, but not for Update. The
value is calculated as the maximum field value in
the table plus autoincrement constant.

: Profile parameter Data from the parameter field will be set in the field
for every SQL Insert and Update operations.

$ Field in the master
source table

Data from the current row in the main source table
will be used in SQL Insert and Update operations.

~ Field in the subordinate
source table

Data from the current row in the subordinate source
table will be used in SQL Insert and Update
operations.

# Field in the master
destination table

Data from the current row in the main destination
table will be used in SQL Insert and Update
operations.

! Field in the subordinate
destination table

Data from the current row in the subordinate
destination table will be used in SQL Insert and
Update operations.

< Field redefinition Mainly used in COPY schema when some columns
names differ in source and destination tables. Data
from the current row in the main source table will be
set in the field.

% Embedded functions Embedded functions allow to call predefined SQL
queries for complex data processing. For more
information see Embedded functions.

14.7 Embedded functions

Embedded functions are the functions that can be used in the "Value" column of the fields map. To
indicate the embedded function in the fields map the special prefix % is used. The function value is
calculated during processing of each  record in the destination table.

Currently Transfer supports the following types of embedded functions:



Reference information 61

Copyright © Golubev D. 2000-2008

Function Parameters Description

SQLGetVal field, table, where expr Returns the field value from the table based on the
where expr criterion. If more than one row is
returned, then the value in the first row is used.

SQLMaxVal field, table, where expr Returns the maximum field  value from the table
based on the where expr criterion.

SQLMinVal field, table, where expr Returns the minimum field value from the table
based on the where expr criterion.

SQLAvgVal field, table, where expr Returns the average field value from the table based
on the where expr criterion.

SQLVarVal field, table, where expr Returns variation of the field value from the table
based on the where expr criterion.

SQLSumVal field, table, where expr Returns sum of the field values from the table based
on the where expr criterion.

SQLCount table, where expr Returns the number of rows in the table satisfying
the where expr criterion.


	Contents
	What's new in version 3.3?
	License info
	Trial version limitations
	How to register
	Feadback
	Introduction
	What is Transfer?
	What is Transfer for?
	How does it work?

	Transfer menu
	File menu
	File menu
	Create
	Open
	Close
	Save
	Save as
	Print setup
	Page setup
	Print
	Import
	Export
	Transfer
	Start exchange
	Stop exchange
	Data profiles
	Options
	Exit

	Edit menu
	Edit menu
	Undo
	Cut
	Copy
	Paste
	Delete
	Select all
	Find
	Replace

	Data menu
	Data menu
	Add
	Retrieve
	Save
	Edit
	Delete
	First
	Previous
	Next
	Last
	Close

	View menu
	View menu
	Toolbar Main
	Toolbar Profiles
	Status bar
	Customize Main Toolbar
	Customize Profiles Toolbar

	Window menu
	Window menu
	Cascade
	Tile horizontally
	Arrange icons

	Help menu
	Help menu
	Help topics
	What's this?
	About Transfer


	Transfer options
	Command line options
	General options
	Data exchange options
	Processing options
	Interface options

	ODBC source setup
	What is ODBC
	ODBC drivers
	ODBC source creation
	File ODBC source
	Tracing ODBC transaction

	Data profile setup
	Data profile editting
	Data profile editting
	New data profile registration
	Entering profile parameters
	Managing transfers list

	Transfer edit
	Transfer edit
	Editting source table data
	Editting destination table data
	Editting subtable data
	Entering fields map
	Entering commands list

	Data profile syntax
	Data profile syntax
	Profile structure description
	Fileds map format
	Commands list format
	Data types definition
	Prefix symbols
	Embedded functions


	Data processing algorithms
	Transfer schemas
	Transfer execution algorithm
	COMPLEX schema processing
	Fields map usage
	Commands list usage
	Automatic data exchange

	Examples
	Examples list
	Using Table schema - "Books"
	Using Copy schema - "Music"
	Using functions and commands - "Transactions"

	Reference information
	Glossary
	Profile structure description
	Fields map format
	Commands list format
	Data types definition
	Prefix symbols
	Embedded functions


